Kant and Hegel in Physics


1. Introduction

2. Integration of Kant and Hegel

3. Synthesis of Quantum Mechanics amd Special Relativity

4. Quark-parton Puzzle

4. Integration of Quantum Mechanics and Special Relativity

Concluding Remarks

Acknowledgments

Appendix

References

  1. Bell, J. S. (2004), Speakable and Unspeakable in Quantum Mechanics, Collected Papers on Quantum Philosophy 2nd Ed., Cambridge Univ. Press: Cambridge, UK.

  2. Gell-Mann, M. (1964), Schematic Model of Baryons and Mesons, Phys. Lett. {8}, pp 214 - 215.

  3. Dirac, P. A. M. (1963), A Remarkable Representation of the 3 + 2 de Sitter Group, J. Math. Phys. {4}, 901 - 909.

  4. Feynman, R. P. (1969), Very High-Energy Collisions of Hadrons, Phys. Rev. Lett. {23}, 1415 - 1417.

  5. Feynman, R. P., Kislinger, M. and Ravndal F. (1971), Current matrix elements from a relativistic quark model, Phys. Rev. D {3}, 2706 - 2732.

  6. Dirac, P. A. M. (1945), Unitary Representations of the Lorentz Group, Proc. Roy. Soc. (London) {A183} 284 - 295.

  7. Yukawa, H. (1953), Structure and Mass Spectrum of Elementary Particles. I. General Considerations, Phys. Rev. {91}, 415 - 416.

  8. Markov, M. (1956), On Dynamically Deformable Form Factors in the Theory of Particles, Suppl. Nuovo Cimento {3}, 760 - 772.

  9. Fujimura, K., Kobayashi, T., and Namiki, M. (1970), Nucleon Electromagnetic Form Factors at High Momentum Transfers in an Extended Particle Model Based on the Quark Model, Prog. Theor. Phys. {43}, 73 - 79.

  10. Kim, Y. S. and Noz, M. E. (1973), Covariant harmonic oscillators and the quark model, , Phys. Rev. D {8}, 3521 - 3627.

  11. Kim, Y. S., Noz, M. E., and Oh, S. H. (1979), Representations of the Poincarť group for relativistic extended hadrons, J. Math. Phys. {20}, 1341 - 1344.

  12. Kim, Y. S. and Noz, M. E, (1977), Covariant Harmonic Oscillators and the Parton Picture, Phys. Rev. D {15}, 335 - 338.

  13. Han, D., Kim, Y. S., and Son, D. (1983), Gauge transformations as Lorentz-boosted rotations, Phys. Lett. B {131}, 327 - 329.

  14. Kim, Y.S. and Noz, M. E. (1986), Theory and Applications of the Poincar\'e Group, Reidel, Dordrecht, The Netherlands.

  15. Kim, Y. S. (1989), Observable gauge transformations in the parton picture, Phys. Rev. Lett. {63}, 348 - 351.

  16. Kim, Y. S. and Wigner, E. P. (1990), Space-time geometry of relativistic particles, J. Math. Phys. {31} 55 - 60.

  17. Kim, Y. S. and Noz, M. E. (2018), New Perspectives on Einstein's E = mc2, World Scientific, Singapore.

  18. Baskal, S., Kim, Y. S., and Noz, M. E. (2019), Einstein's E = mc2 from Heisenberg's Uncertainty Relations, Quantum Reports {1(2)}, 236 - 251.

  19. Kim, Y. S and Noz, M. E. (2020), Integration of Diracís Efforts to Construct a Quantum Mechanics Which Is Lorentz-Covariant, Symmetry {12(8)}, 1270.

  20. Han, D., Kim, Y. S., and Noz, M. E.(1981), Physical Principles in Quantum Field Theory and in Covariant Harmonic Oscillator Formalism, Foundations of Physics {11} 895 - 903.

  21. Inonu, E. and Wigner, E. P. (1953), On the Contraction of Groups and their Representations, Proc. Natl. Acad. Sci. (U.S.), {39}, 510 - 524.

  22. Dirac, P. A. M. (1927), The Quantum Theory of the Emission and Absorption, Proc. Roy. Soc. (London) {A114}, 243 - 265.

  23. Dirac, P. A. M. (1949), Forms of Relativistic Dynamics, Rev. Mod. Phys. {21}, 392 - 399.

  24. Hussar, P. E. (1986), Valons and harmonic oscillators, Phys. Rev. D {23}, 2781 - 2783.

  25. Wigner, E. (1939), On unitary representations of the inhomogeneous Lorentz group, Ann. Math. {40}, 149 - 204.